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Abstract: Advanced digital solutions are increasingly introduced into manufacturing systems to
make them more intelligent. Intelligent Waste Management Systems in industries allow for data
collection and analysis to make better-informed decisions, monitor and manage processes remotely,
and improve waste management. In many industries, scrap is collected in large waste containers
located on the factory floor, usually close to its source. In most cases, monitoring of waste containers’
fill levels is either manually performed by visual inspection by the operators working in close
proximity or by employing intrusive mechanical systems such as weight sensors. This work presents
a computer vision system that uses Deep Learning (DL) and Convolutional Neural Network (CNN)
for the automated estimation of the fill level in industrial waste containers of metal scrap. The training
method and parameters as well as the classification performance of VGG16 CNN that was retrained
upon images collected in the field, are presented in detail. The proposed method has been validated
upon an industrial case study from the copper tube production industry in which the fill level of
two waste containers is estimated. A total of 9772 images were captured for the first container and
11,234 images for the second container. The VGG16 model achieved an accuracy from 77.5% to 95%
on the testing dataset. The industrial case study demonstrates that the proposed computer vision
system has sufficient accuracy for classifying the fill levels of metal scrap containers which allows for
the development of waste management applications in industrial environments.

Keywords: Industry 4.0; digitalization of industry; scrap management; convolutional neural
networks

1. Introduction

The importance of maintaining the production of manufacturing systems within the
desired boundaries of costs quality and time, while preserving certain levels of flexibility for
addressing unplanned situations had a great impact on manufacturing research receiving
particular attention [1]. Under this perspective, industrial processes could greatly benefit
from the integration of Industry4.0 digital solutions [2] and Artificial Intelligence (AI)
technologies [3,4] that can be used for the management of activities on a factory floor [5].
Among other activities, optimized management of scrap, generated during production,
contributes to lean manufacturing, reducing production deadlock situations that may occur
due to poor waste management. For example, the lack of space in waste containers may
result in unplanned delays in the production process.

The main contribution of this work is a computer vision system that uses Deep
Learning (DL) and Convolutional Neural Network (CNN) for the automated estimation of
the fill level in industrial waste containers of metal scrap. The system has been implemented
and deployed in an industrial environment for copper products.

This work consists of 5 chapters. Chapter 2 reviews the scientific literature for relevant
topics including Industry 4.0, computer vision methods with a focus on machine and
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deep learning architectures, and solutions and wastebins’ fill-level approaches. Chapter 3
presents the main steps of the proposed method. Chapter 4 details the application of the
aforementioned method in an industrial case of a copper tube plant. Finally, Chapter 5
discusses the results and presents future directions. The industrial case study demonstrates
that the proposed method has sufficient accuracy that allows its practical application in
industrial environments for estimating the fill-level of industrial waste containers. The fill-
level information can be further exploited for managing scrap on the manufacturing floor.

In the metal industries, scrap usually consists of recyclable materials like aluminum,
iron, and copper, left over after manufacturing processes. Its value, however, remains high
as it can be collected and recycled. A concept for an intelligent waste management system
in the copper industry is presented in [6]. It considers the use of an Industrial Internet
of Things (IIoT) platform for receiving and storing waste data from the production, to
identify abnormalities and/or deviations from pre-defined thresholds. Moreover, scrap
is collected in waste containers, whose management becomes important if not efficiently
handled during production. Filled-up waste containers may interrupt production until they
are either emptied or replaced. Thus, the monitoring and estimation of the fill level become
important for preserving a smooth production. This will allow companies to manage
their scrap collection process more efficiently, something that can reduce operational costs
and environmental impact. This process can be supported by the use of sensors and
computer vision methods [7]. The decreasing costs of the Internet of Things (IoT) are
trending nowadays, and it can be applied in a wide range of fields. Waste management
using IoT has a very good prospect and is required for reducing the growing pollution in
the environment [8]. In [9], sonar sensors have been used to monitor wastebins in smart
cities to provide measurements from 2 cm to 400 cm, with a 3 mm accuracy. In [10], they
used two ultrasonic sensors inside waste bins for collection and monitoring of the level
of waste inside the bin. In [11], they deployed infrared and sonar-based sensors for metal
waste monitoring in a manufacturing site.

Machine and computer vision has gathered intensive academic attention and the use
of this technology has spread rapidly, because of its advantages. Machine vision technology
with human-like vision capability has revolutionized the process of automated inspec-
tion [12,13]. An image-based framework considering pre-trained CNN, ResNet-101 to
detect surface defects during the centerless grinding of tapered rollers has been developed
in [14]. Similarly, neural networks were used for identifying the dimensional patterns and
classifying the profiles on a rubber weather-strip extrusion production line in [15]. Com-
puter vision systems using cameras which take a real-time picture of the bin and analyse its
fill level have also been used for waste monitoring. A bin level detection model based on
the grey level co-occurrence matrix feature extraction approach has been developed in [16].
In [17], they presented a system for the automation of waste auditing in industrialized con-
struction facilities in which the waste generated during the cutting process was quantified
using contour-based image processing algorithms, and the identification of the material
was determined by deep learning classification models. A Smart Bin with computer vision
and IoT that can separate waste automatically with a ResNet-50 Deep Learning model has
been developed for classifying and separating different types of waste [18].

To the best of our knowledge, no work has been reported that aims at classifying the
fill-level of metal scrap containers based on computer vision and deep learning technologies
and then integrating the computer vision system into an information platform for managing
the information. This work aims to describe and implement such a system and evaluate it
in a case study of a copper tube plant.

2. Computer Vision and Deep Learning Method for Industrial Scrap Containers
Fill-Level Estimation

Based on the results of the state-of-the-art analysis, three main options were identified
for industrial scrap containers fill-level estimation. Computer vision systems, ultrasonic
sensors, and sensors can measure weight. Ultrasonic sensors are commonly used in
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industrial environments for measuring the fill level of waste bins and other applications
(e.g., [10]). However, the installation of an ultrasonic sensor, in some cases such as the case
studied in this work, is not efficient in terms of not disturbing the production processes
in a factory. The sensor should have been placed within or above the bin container at
an inclined angle. Such a placement would have introduced high risk of the sensor being
damaged during the bin filling as well as the bin collection processes. This risk would
have required for sensor mounting and unmounting procedures during these processes
which is not efficient. Weight sensors for relatively large containers may be considered
an expensive and intrusive solution to the working environment. These sensors may
also have considerable error and provide inaccurate results in estimating the bin fill-level.
Different scrap loads may have the same weight but take up different volumes in the
container, because of different load patterns, thus corresponding to significantly different
bin fill levels. The cost and maintenance of a vision system for industrial waste bin fill level
estimation depends on several factors, such as the type of cameras used, the complexity of
image processing algorithms, and the number of cameras required for the application. In
this work, a low-cost machine vision system was developed as low-cost area scan cameras,
using a software triggering mechanism and no frame grabber hardware. These systems
can provide accurate results about the fill level and can be less affected by factors such as
the fill pattern of the scrap in the bin, and are not intrusive to the working environment.

This work presents a novel computer vision system that can automatically recognize
the fill level of industrial waste containers with metal scrap. The fill pattern may differ
in terms of waste location within a container, geometry and shape of the waste, and
relative position compared to the optical sensor (camera). The proposed approach can
classify the fill level in different categories by capturing RGB images of the waste containers
and applying them as input to a pre-trained CNN model that executes the classification
task. The results of the fill-level estimation process are managed by an IIoT platform and
visualized in a user-friendly web application. In Figure 1 the flow diagram of the proposed
method is presented.
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1. Define bin fill levels: This step decides on the definition of the fill levels of the waste
bins. The fill level ranges from 0% (empty bin) to more than 100% (overfilled bin).
Moreover, as a special class, the “no-bin” class can be included, signifying the absence
of the container within the field of view (e.g., the container was previously moved
by a forklift). The granularity of the fill-levels from 0% to 100% is defined by taking
into account field experts’ capability to classify the fill level of a container as well, as
the level of accuracy needed by the estimation model for offering waste management
services on top of the fill-level assessment. In this work, as explained in the industrial
case description, a step of 10% has been adopted so that the levels were (1–10%),
(11–20%) etc. These levels are then used for labelling captured images for model
training purposes.

2. Image data acquisition and pre-processing: Images are collected by optical sensors. Pre-
processing of image data takes place to make sure that the image fits the needs of the
classification task. In some cases, cameras may serve multiple purposes and are not
used solely for fill-level monitoring. For example, they may be used for tracking the
presence or absence of some specific equipment in the area. In such cases, the images
could be cropped around the area of interest.

3. Image labelling (classification): In case the CNN classification model needs training,
the images captured are labelled by an expert (human) in one of the fill-level classes,
defined in step 1. The labelled images are then provided as input to the training step
that follows.

4. Training and evaluation of CNN model: By the time a sufficient number of images
is collected, open-source DL models for image classification, such as VGG16, that
are already trained in huge image datasets such as ImageNet [19] are customized
and retrained on the labelled images. The captured images are resized for fitting
to the input dimension of the CNN models (in the industrial pilot of this study
a 224 × 224 resizing of the images took place). The accuracy and loss of the CNN
model during training and evaluation are calculated. Accuracy depicts the number of
correct model predictions of the overall predictions while loss provides the difference
between the expected outcome and the outcome produced by the CNN model. The
training accuracy represents the accuracy of the model at fitting the data. Validation
accuracy represents an unbiased metric on how well the model fits the training data
while finetuning the model’s hyperparameters. The accuracy is calculated based on
the following Formula (1):

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

where:

TP: True Positive,
TN: True Negative,
FP: False Positive,
FN: False Negative.

The loss is calculated based on the used loss function. In all cases, the used loss function
was categorical cross-entropy. Categorical cross-entropy is given by Formula (2) below:

L = ∑M
j=1 yi log(ŷi), (2)

where:

y is a vector of entries for each class and ŷi is the vector of predictions that contains
the probabilities for each outcome, which needs to sum to 1.

5. IIoT platform, image classification service and web application: The trained model is
deployed within an Image Classification Service that runs on the services layer of
a digital IIoT platform. The layered architecture proposed in [2] and adapted in [6]
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has been adopted in this work for integrating the different layers from factory-level
edge devices (cameras) to IIoT platforms and Web applications. The adopted layered
architecture allows for structured deployment of software components and hardware
devices both at the edge and the cloud, while at the same time the integration among
the different layers is based on clearly defined roles and interfaces. Images captured
by the computer vision system are populated through IoT protocols such as Message
Queuing Telemetry Transport (MQTT) or Representational State Transfer Application
Programming Interface (REST API) function calls to the IIoT platform. Through
a publish-subscribe mechanism, new images trigger the call of the Image Classifi-
cation Service that classifies each new image to one of the fill levels and stores this
information back to the IoT platform. A web application is linked to the IIoT platform
for providing end-user functionality such as dashboards with bin-level statuses and
trendlines.

3. Industrial Case Study
3.1. Industrial Pilot

The method presented in Chapter 2 has been applied in an industrial pilot in the
production line of a copper tube plant. In Figure 2, the process plan of the copper tube
production under study is presented. The process starts with copper billets being preheated
before entering the hot extrusion press to produce the “mother” tube. These tubes, which
have an initial length of 15 to 30 m, are then reduced in diameter and wall thickness
by either drawing or cold rolling processes. Further reductions are then performed at
Breakdown lines and Spinner Blocks by drawing the tube further with successive passes,
till the final or semi-final dimension is reached. In the spoolers’ workstations, the copper
pipe is formed in coils, to be forwarded for annealing to the Bright Annealing Furnaces
and then for insulation with polyethylene foam. The final step of the production is the
packaging and storing of tubes.
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The workstation where the proposed solution has been applied is the Spoolers’ work-
station, due to the amount of scrap these machines are producing. More specifically, the
Spoolers produce level wound coil (semi-) final products and the scrap generated is col-
lected in containers. A container may be used to collect scrap for a group of Spooler
machines. In Figure 3 samples of the bins located close to the Spoolers are depicted.
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3.2. Pilot System Configuration and Deployment

To support the industrial scenario, within the pilot environment described above,
the system presented in Figure 4 has been deployed in the pilot area of the spoolers’
workstation. For the implementation of the computer vision system, one area scan, GigE
interface, and camera were used (Table 1). A consistent setup was utilized both during
the training and testing phase of the images. The pilot case involved the placement of
a camera approximately 2 m above the waste bins, in close proximity to a wall, on a stable
iron structure, utilizing a camera mount bracket with a 360/90 degree rotational capability.
The camera was connected to a computer machine via an ethernet cable for the purpose
of triggering the software and storing the captured images. The location of the waste
bin remained constant in accordance with factory regulations, and the bins were always
situated within a specific frame formed on the floor, with an acceptable deviation of
approximately 10 cm.

The following software modules have been developed and deployed (Figure 4):

• Camera Control App: A python application that is used to control, configure, manage,
and trigger the camera for capturing images in a pre-set periodic manner (one im-
age per five minutes). The Camera Control App receives the captured images and
then stores them into the IIoT platform through REST API calls and the publish-
subscribe mechanism.

• IIoT platform: An extension of the IIoT platform developed in Java and initially pre-
sented in [2] has been used for the needs of this pilot. The platform has been extended
to implement the Asset Administration Shell (AAS) model [20] for storing and manag-
ing information collected from sensors in the shop-floor or legacy systems.

• DL Classification App: This application subscribes to image publishing events and
when a new image is published by the Camera Control App it applies the classification
model and returns the result, in JSON format, to the IIoT platform. The application
is developed in Python and uses Tensorflow ML library. The development of the DL
model is described in detail in chapter 3.3.
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• Legacy Systems Connector: In order to provide a holistic insight into the status of the
shop floor, the information provided by the vision system is combined with additional
information regarding the status of the activities on the shop floor and is loaded to the
IIoT system.

• Waste Management Web Application: The waste management web application presents
the bin fill level and different types of Key Performance Indicators in a dashboard
(Figure 5) for monitoring purposes by the engineers.
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Table 1. Camera specifications.

Attribute Value

Sensor type CMOS
Resolution 1600 px × 1200 px (2 MP)
Frame Rate 60 FPS

Mono/Color Color
Interface GigE

Operating temperature 0–50 ◦C
Power Consumption PoE 2.7 W
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3.3. Machine Learning Model Development

In this chapter, the implementation of the method, described in Chapter 3, upon the
industrial pilot case, is presented.
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• Define bin fill levels: For the purpose of the case study in this work, twelve (12) fill-
levels were defined as follows: 0% (empty bin), [1–10%], [11–20%], [21–30%], [31–40%],
[41–50%], [51–60%], [61–70%], [71–80%], [81–90%], [91–100%], and greater than 100%
(“Overfilled”), and a class which signify the absence of a bin (“No Bin”).

• Image data acquisition and pre-processing: The first step is using the camera to capture
an image of the bin. During the time of the study, more than twenty thousand images
have been captured (Table 2). A sample picture which is captured from the camera is
shown in Figure 3. To build the training dataset, each image needs to be pre-processed.
Image pre-processing starts by cropping the top and bottom parts and the next step is
to rotate the image clockwise by 90 degrees. After the rotation, the picture is then cut
down the middle into two parts creating two images, one for each bin (see Figure 6).
The bins are always placed inside a red rectangle drawn on the floor. This means that
the placement of the bins is fixed but can deviate a few centimetres in all directions.
Since one camera was used to capture the images for both bins, due to the camera
position not all details of Bin 2 can be captured. Due to the position and field of view
of the camera, there is a blind spot on the left side of Bin 2 (see Figure 6b) which can
make the fill level recognition more challenging for this particular bin. The placement
of the camera was based on the needs of the manufacturer for giving priority to
monitoring Bin 1.

• Image classification (labelling): After discussion with users and operators, the classifica-
tion/labelling of the captured images took place. Images were classified according to
the fill level of the bin shown. Labelling was performed by examining the captured
images one by one and placing them in the appropriate class inside the dataset. This
was done for both Bin 1 and Bin 2. In Figure 7 sample images for both Bin1 and Bin2
are provided.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 17 
 

  
(a) (b) 

Figure 6. (a) Image of Bin1 after pre-processing, (b) Image of Bin2 after pre-processing; the blind 
spot is indicated. 

• Image classification (labelling): After discussion with users and operators, the classifi-
cation/labelling of the captured images took place. Images were classified according 
to the fill level of the bin shown. Labelling was performed by examining the captured 
images one by one and placing them in the appropriate class inside the dataset. This 
was done for both Bin 1 and Bin 2. In Figure 7 sample images for both Bin1 and Bin2 
are provided. 

Bin 
Fill-Level 

0% 1–10% 41–50% 91–100% Overfilled 
Bin 1 

   
Bin 2 

  

Figure 7. Samples of different fill levels for Bin 1 and Bin 2. 

An annotated dataset of 9772 images for Bin 1 and 11,234 images for Bin 2 was cre-
ated. In Table 2 there is an overview of the number of photos labelled per bin and fill level. 

  

Blind Spot 

Figure 6. (a) Image of Bin1 after pre-processing, (b) Image of Bin2 after pre-processing; the blind spot
is indicated.



Appl. Sci. 2023, 13, 2575 10 of 16

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 17 

(a) (b) 

Figure 6. (a) Image of Bin1 after pre-processing, (b) Image of Bin2 after pre-processing; the blind 
spot is indicated. 

• Image classification (labelling): After discussion with users and operators, the classifi-
cation/labelling of the captured images took place. Images were classified according 
to the fill level of the bin shown. Labelling was performed by examining the captured 
images one by one and placing them in the appropriate class inside the dataset. This 
was done for both Bin 1 and Bin 2. In Figure 7 sample images for both Bin1 and Bin2
are provided. 

Bin 
Fill-Level 

0% 1–10% 41–50% 91–100% Overfilled 
Bin 1 

Bin 2 

Figure 7. Samples of different fill levels for Bin 1 and Bin 2. 

An annotated dataset of 9772 images for Bin 1 and 11,234 images for Bin 2 was cre-
ated. In Table 2 there is an overview of the number of photos labelled per bin and fill level. 

Blind Spot 

Figure 7. Samples of different fill levels for Bin 1 and Bin 2.

An annotated dataset of 9772 images for Bin 1 and 11,234 images for Bin 2 was created.
In Table 2 there is an overview of the number of photos labelled per bin and fill level.

Table 2. Labelled data per bin and fill-level.

Bin
Fill Levels (%)

0 1–10 11–20 21–30 31–40 41–50 51–60 61–70 71–80 81–90 91–100 No Bin Overfilled

1 236 466 245 441 846 1101 600 1514 838 1803 885 12 784
2 2087 2087 932 632 729 1058 1009 963 719 440 422 13 142

• Training and evaluation of CNN model: The VGG16 [21] image classifier CNN model,
pre-trained on the ImageNet benchmark dataset, was selected for executing the image
classification task. By using a pre-trained model with initial weight values, less images
can be used for training, rather than starting from scratch. This reduces the amount of
time needed for image acquisition and labelling as well as the required computational
power to train the model. A customized model for each bin based on the initial
model was developed using the Tensorflow Keras [22]. The following training setup
was used:

• The annotated dataset of images (Table 2) was utilized for training.
• For both Bin 1 and Bin 2, the split for training, validation, and testing of the dataset in

Table 2 was 70%, 20%, and 10% respectively.
• The images were normalized, and their input shape set to 224 × 224 × 3.
• The batch size for the training was set to 32.
• The number of training epochs used was 12 for the model for Bin 1 and 29 for the

model for Bin 2. The number of epochs was not statically determined at the beginning
of the training process. Instead, an early stopping function was used which monitored
the validation loss. The function was implemented with a patience of 3, which restored
the best weights. For Bin 1, the validation loss threshold after which training stopped
was 0.19. For Bin 2, the validation loss threshold after which training stopped was 0.14.

• The values of the network weights were initialized to ImageNet ones (pre-trained to
ImageNet dataset).

• Pooling was set to “avg”, meaning that Global Average Pooling was applied to the
output of the last convolutional block.
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• All network layers were un-frozen and free to be retrained on the new data.
• The top, dense, layer available by default in Tensorflow Keras was replaced with

a custom one that works for classifying 13 classes. The new top layer consisted of the
following consecutive layers and the model’s architecture can be seen in Figure 8:

a. A Flatten Layer
b. A Dense Layer with 4096 units and its activation function set to “relu”
c. A Dropout layer with a rate of 0.4
d. A Dense Layer with 1024 units and its activation function set to “relu”
e. A last Dense Layer with 13 units and its activation function set to “softmax”

• To optimize the model parameters, the Adam [23] optimizer was used in all CNN
models. The learning rate was set at 0.00001.
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After training was completed, the customized VGG16 model achieved the following
performance results:

• For Bin 1, the model achieved 96% training accuracy, 93% validation accuracy, and
89% accuracy on the testing set. The model’s loss was 0.1.

• For Bin 2, the model achieved 96% accuracy on the training set, 94% validation
accuracy, and 95% accuracy on the testing dataset. The model’s loss was 0.14.

In Figure 9, the graphs for the accuracy and loss performance of VGG16 model in Bin
1 are shown.
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In Figures 10 and 11, the graphs for the accuracy and loss performance of the VGG16
model in Bin 2 are presented.
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In order to assess the performance of the customized VGG16 model, three additional
state of the art, off-the-shelf image classifiers were tested upon the developed dataset.
These models include the ResNet50 model [24], the InceptionV3 [25], and the MobileNetV2
model [26]. In Table 3, the results of the training, evaluation, and testing of each model
are presented.

Table 3. Comparison between customized VGG16, ResNet50, InceptionV3, and MobileNetV2 CNN
models when tested for Bin 1 and Bin 2.

VGG16 ResNet50 InceptionV3 MobileNetV2

Bin 1

Train. Accuracy: 96%
Val. Accuracy:

93%
Loss: 0.1

Test. Accuracy:
89%

Train. Accuracy: 99%
Val. Accuracy: 97%

Loss: 0.2
Test. Accuracy:

82%

Train. Accuracy: 98%
Val. Accuracy: 95%

Loss: 0.22
Test. Accuracy: 81%

Train. Accuracy: 75%
Val. Accuracy: 71%

Loss: 0.63
Test. Accuracy: 72%

Notes Best Performing Model Overfitting Overfitting Worst Performing Model

Bin 2

Train. Accuracy: 96%
Val. Accuracy: 94%

Loss: 0.14
Test. Accuracy:

95%

Train. Accuracy: 95%
Val. Accuracy: 93%

Loss: 0.2
Test. Accuracy:

92%

Train. Accuracy: 88%
Val. Accuracy: 91%

Loss: 0.28
Test. Accuracy: 88%

Train. Accuracy: 69%
Val. Accuracy: 73%
Test. Accuracy: 71%

Notes Best Performing Model Overfitting Underfitting Worst Performing
Model—Underfitting
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After the training was completed, the VGG16 CNN model was tested with 884 new
pictures (which were not present in the training, validation or the previous testing set) taken
from Bin1. These new images were used to validate the previous score of 89% accuracy on
the first testing set and get a more accurate picture of the model’s performance on new data.
Of these 884 pictures, 800 were correctly classified while 84 pictures were misclassified.
This results in an accuracy of 90.5%, similar to that achieved on the first testing set. In
Table 4, we can see a detailed look at the exact misclassification (false-positive) percentage
for each class.

Table 4. Analysis of the bin 1 images that were wrongly classified by the customized VGG16 model.

No
Bin 0% 1–

10%
11–

20%
21–

30%
31–

40%
41–

50%
51–

60%
61–

70%
71–

80%
81–

90%
91–

100% Overfilled Total

Total Images
Misclassified 4 0 0 9 7 11 28 4 5 2 4 10 0 84

% Of Misclassified
Images 4.7% 0% 0% 10.7% 8.3% 13.0% 33.8% 4.7% 5.9% 2.3% 4.7% 11.9% 0% 100%

% Relatively to the
Entire Set 0.45% 0% 0% 1.01% 0.79% 1.24% 3.17% 0.45% 0.56% 0.27% 0.45% 1.13% 0% 9.5%

On further analysis, precision, recall, F1-score, and the weighted average were calcu-
lated for the Bin 1 model and the results can be found below (Table 5).

Table 5. Evaluation indexes of customized VGG16 Bin 1 model.

Precision Recall F1-Score Weighted Average

0.9044 0.9153 0.9098 0.9184

As a next step, the delta of the misclassification for these 84 images was analyzed. Out
of the 84 images, 53 were misclassified as one class above or below the class they truly
belonged to. This is shown in Table 6.

Table 6. Analysis of the delta difference between the calculated fill level and the actual one for the
customized VGG16 model in bin 1.

Delta of Misclassification 1 2 3 4 5 6 7 8 9 10 11 12 Total

Sum of Misclassified Images 53 15 9 7 0 0 0 0 0 0 0 0 84
% Relatively to the Entire

Misclassified Set 63.2% 17.8% 10.7% 8.3% 0 0 0 0 0 0 0 0 100%

Similarly, the CNN model was tested with new images for Bin 2. In this case, 200 new
captured images (which were not present in the training, the validation, nor the previous
testing set) were used to test the model. These new images were tested to validate the score
on the first testing set and get a full picture of the model’s performance on new data. A total
of 155 out of the 200 images were correctly classified, while 45 were not. This resulted in
an accuracy of 77.5%. In Table 7, a detailed look at the exact misclassification percentage
for each class is presented.

Table 7. Analysis of the bin 2 images that were wrongly classified by the customized VGG16 model.

No
Bin 0% 1–

10%
11–

20%
21–

30%
31–

40%
41–

50%
51–

60%
61–

70%
71–

80%
81–

90%
91–

100% Overfilled Total

Total Images
Misclassified 0 0 0 8 22 2 2 0 6 0 2 1 2 45

% % Of Misclassified
Images 0% 0% 0% 17.9% 48.9% 4.4% 4.4% 0% 13.4% 0% 4.4% 2.2% 4.4% 100%

% Relatively to the
Entire Set 0% 0% 0% 4% 11% 1% 1% 0% 3% 0% 1% 0.5% 1% 22.5%
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Upon further investigation, precision, recall, F1-score, and weighted average were
calculated for the Bin 2 model and the results can be found below (Table 8).

Table 8. Evaluation indexes of customized VGG16 Bin 2 model.

Precision Recall F1-Score Weighted Average

0.7743 0.7745 0.7744 0.8307

Similar to Bin 1, the delta of the misclassification for the 45 images was calculated.
Out of the 45 pictures, 16 were misclassified 2 classes above or below the class they truly
belonged to, 14 had a delta of 3, 11 had a delta of 1, and 4 were 4 classes above or below the
actual class. This is shown in Table 9.

Table 9. Analysis of the delta difference between the calculated fill level and the actual one for the
customized VGG16 model in Bin 2.

Delta Of Misclassification 1 2 3 4 5 6 7 8 9 10 11 12 TOTAL

Sum of Misclassified Images 11 16 14 4 0 0 0 0 0 0 0 0 45
% Relatively to the Entire

Misclassified Set 24.5% 35.5% 31.1% 8.9% 0% 0% 0% 0% 0% 0% 0% 0% 100%

The scores of the evaluation of the model for Bin 2 differ by 17.5% and the 200 testing
images were qualitatively investigated. A closer observation of the pictures showed that
these pictures were significantly different from the ones used for the training and validation
stage. For example, it was observed that in the second testing dataset there was a significant
number of images where the scrap was placed inside the bin in a different vertical orienta-
tion compared to the horizontal placements, seen during the training phase, where Bin-2 is
filled more uniformly. Due to the specific use of Bin 2 from the factory operators, who use
it mainly for storing scrap after Bin 1 is filled in, the variability of the pictures captured and
eventually used during the training stage might not be representative. In order to validate
that the model of Bin 2 can learn from new images, a subset of these 200 images was
used to re-train the model, which was then tested and found to be significantly improved.
Consequently, for the Bin 2 classification model to become more generalizable, the model
should be trained with data containing more variability (e.g., recorded on different days
and times).

4. Conclusions and Future Work

This work presents a computer vision system along with its integration into an IIoT
platform for identifying and classifying the fill levels of waste containers used for collecting
metal scrap in manufacturing industries. Deep Learning models and more specifically
the VGG16 CNN model has been trained for performing the classification task in a case
study deriving from a copper tube plant. The industrial case study demonstrates that the
VGG16 model has sufficient accuracy for classifying the fill levels of metal scrap containers
which allows their practical application in industrial environments. In the context of the
industrial pilot case, two VGG16 CNN models have been trained for two different metal
scrap containers. The models have been trained with the batch size parameter set to 32, with
approximately 9.000 annotated images for one model and approximately 11.000 images for
the second model. They achieved an accuracy ranging from 77.5% to 95%, depending on
the model and on the testing dataset. Moreover, the work also presents an implemented
IIoT-based system to manage the information generated by the computer vision system
and communicate it to the industrial users via the IIoT information stack. The proposed
method can be implemented using standard, relatively low-cost, off-the-shelf hardware
and software components for computer vision systems, especially for cases in which other
sensor-based systems cannot be applied.
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The current work did not investigate the performance of the model based on different
types of waste in the bins. However, it can be expected that the trained model would
be a good starting point that can be further retrained with additional images that would,
however, be considerably less in volume compared to the ones used in the current work,
thus saving costs from model development task. One shortcoming of the proposed method
is that two distinct models were trained for each of the two bins of the industrial pilot case.
Due to the intrinsic differences in the camera field of view between bin 1 and bin 2, depicted
in the images (see Figure 7), the pictures between the two bins differ significantly. In order
to have achieve a common, generalized model, mounting of a second camera would be
required, which would provide a similar field of view to bin 2, similar to the existing field of
view for bin 1, which, however, would require additional costs that would not be accepted
by the factory management, given the fact that bin 2 does not have the same impact on
the operation of the work center as bin 1. However, investigating the generalization of the
CNN model will be a topic of future research.

The images were labelled by experts who visually estimated the fill level. However,
due to the geometry of the copper tube waste, their estimates could be biased, as the visual
difference in 10% increments could be small, and as a result, similar images might be
labelled to different classes. The issue of mislabelled images can be responsible for some of
the model misclassifications. In the future, in order to address this issue, work will take
place in the direction of annotating the images by automatically adding refence lines, that
indicate the height of the bin at different points, that could support the homogenization of
the labelling. The user will label the images with regards to these reference lines and thus
misclassifications will be reduced. Moreover, future work will focus transfer the models
developed for one workstation to other workstations of the production line, in which scrap
may have different properties such as geometry or bin filling patterns. This would alleviate
some of the training spent in labelling images for the different fill-in levels. Moreover, to
further alleviate the tedious, costly, and error-prone process of manual labelling, automated
methods based on synthetic datasets [27] can also be considered for undertaking this task.
Finally, based on the data collected, fill-level prediction models will be developed that can
be used for extending the services offered from fill-level visibility to prediction that can
further improve the waste management practices applied.
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